Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 953738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966706

RESUMO

In chickens, infections due to influenza A virus (IAV) can be mild to severe and lethal. The study of IAV infections in poultry has been mostly limited to strains from the North American and Eurasian lineages, whereas limited information exists on similar studies with strains from the South American lineage (SAm). To better evaluate the risk of introduction of a prototypical SAm IAV strain into poultry, chickens were infected with a wild-type SAm origin strain (WT557/H6N2). The resulting virus progeny was serially passaged in chickens 20 times, and the immunopathological effects of the last passage virus, 20Ch557/H6N2, in chickens were compared to those of the parental strain. A comparison of complete viral genome sequences indicated that the 20Ch557/H6N2 strain contained 13 amino acid differences compared to the wild-type strain. Five of these mutations are in functionally relevant regions of the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, despite higher and more prolonged virus shedding in chickens inoculated with the 20Ch557/H6N2 strain compared to those that received the WT557/H6N2 strain, transmission to naïve chickens was not observed for either group. Analyses by flow cytometry of mononuclear cells and lymphocyte subpopulations from the lamina propria and intraepithelial lymphocytic cells (IELs) from the ileum revealed a significant increase in the percentages of CD3+TCRγδ+ IELs in chickens inoculated with the 20Ch557/H6N2 strain compared to those inoculated with the WT557/H6N2 strain.

2.
Virology ; 566: 98-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896902

RESUMO

The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.


Assuntos
Anticorpos Neutralizantes/biossíntese , Herpesvirus Bovino 1/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Imunoglobulina G/biossíntese , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Receptor 8 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Anticorpos Antivirais , Bovinos , Proliferação de Células , Endossomos/imunologia , Endossomos/metabolismo , Expressão Gênica , Herpesvirus Bovino 1/patogenicidade , Imunidade Inata/efeitos dos fármacos , Imunização Secundária/métodos , Rinotraqueíte Infecciosa Bovina/genética , Rinotraqueíte Infecciosa Bovina/imunologia , Rinotraqueíte Infecciosa Bovina/virologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Linfócitos/imunologia , Linfócitos/virologia , Masculino , Cavidade Nasal/imunologia , Cavidade Nasal/virologia , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Vacinação/métodos , Vacinas de Produtos Inativados
3.
Vaccine ; 39(6): 1007-1017, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33446386

RESUMO

DNA vaccines are capable of inducing humoral and cellular immunity, and are important to control bovine herpesvirus 1 (BoHV-1), an agent of the bovine respiratory disease complex. In previous work, a DNA plasmid that encodes a secreted form of BoHV-1 glycoprotein D (pCIgD) together with commercial adjuvants provided partial protection against viral challenge of bovines. In this work, we evaluate new molecules that could potentiate the DNA vaccine. We show that a plasmid encoding a soluble CD40 ligand (CD40L) and the adjuvant Montanide™ GEL01 (GEL01) activate in vitro bovine afferent lymph dendritic cells (ALDCs). CD40L is a co-stimulating molecule, expressed transiently on activated CD4+ T cells and, to a lesser extent, on activated B cells and platelets. The interaction with its receptor, CD40, exerts effects on the presenting cells, triggering responses in the immune system. GEL01 was designed to improve transfection of DNA vaccines. We vaccinated cattle with: pCIgD; pCIgD-GEL01; pCIgD with GEL01 and CD40L plasmid (named pCIgD-CD40L-GEL01) or with pCIneo vaccines. The results show that CD40L plasmid with GEL01 improved the pCIgD DNA vaccine, increasing anti-BoHV-1 total IgGs, IgG1, IgG2 subclasses, and neutralizing antibodies in serum. After viral challenge, bovines vaccinated with pCIgD-GEL01-CD40L showed a significant decrease in viral excretion and clinical score. On the other hand, 80% of animals in group pCIgD-GEL01-CD40L presented specific anti-BoHV-1 IgG1 antibodies in nasal swabs. In addition, PBMCs from pCIgD-CD40L-GEL01 had the highest percentage of animals with a positive lymphoproliferative response against the virus and significant differences in the secretion of IFNγ and IL-4 by mononuclear cells, indicating the stimulation of the cellular immune response. Overall, the results demonstrate that a plasmid expressing CD40L associated with the adjuvant GEL01 improves the efficacy of a DNA vaccine against BoHV-1.


Assuntos
Adjuvantes Imunológicos , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1 , Imunogenicidade da Vacina , Vacinas de DNA , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Ligante de CD40/genética , Bovinos , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Bovino 1/genética , Manitol/análogos & derivados , Plasmídeos/genética , Vacinas de DNA/genética
4.
Transbound Emerg Dis ; 68(2): 587-597, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32643286

RESUMO

New technologies in the field of vaccinology arise as a necessity for the treatment and control of many diseases. Whole virus inactivated vaccines and modified live virus ones used against Bovine Herpesvirus-1 (BoHV-1) infection have several disadvantages. Previous works on DNA vaccines against BoHV-1 have demonstrated the capability to induce humoral and cellular immune responses. Nevertheless, 'naked' DNA induces low immunogenic response. Thus, loading of antigen encoding DNA sequences in liposomal formulations targeting dendritic cell receptors could be a promising strategy to better activate these antigen-presenting cells (APC). In this work, a DNA-based vaccine encoding the truncated version of BoHV-1 glycoprotein D (pCIgD) was evaluated alone and encapsulated in a liposomal formulation containing LPS and decorated with MANα1-2MAN-PEG-DOPE (pCIgD-Man-L). The vaccinations were performed in mice and bovines. The results showed that the use of pCIgD-Man-L enhanced the immune response in both animal models. For humoral immunity, significant differences were achieved when total antibody titres and isotypes were assayed in sera. Regarding cellular immunity, a significant increase in the proliferative response against BoHV-1 was detected in animals vaccinated with pCIgD-Man-L when compared to the response induced in animals vaccinated with pCIgD. In addition, upregulation of CD40 molecules on the surface of bovine dendritic cells (DCs) was observed when cells were stimulated and activated with the vaccine formulations. When viral challenge was performed, bovines vaccinated with MANα1-2MAN-PEG-DOPE elicited better protection which was evidenced by a lower viral excretion. These results demonstrate that the dendritic cell targeting using MANα1-2MAN decorated liposomes can boost the immunogenicity resulting in a long-lasting immunity. Liposomes decorated with MANα1-2MAN-PEG-DOPE were tested for the first time as a DNA vaccine nanovehicle in cattle as a preventive treatment against BoHV-1. These results open new perspectives for the design of vaccines for the control of bovine rhinotracheitis.


Assuntos
Doenças dos Bovinos/prevenção & controle , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Vacinação/veterinária , Animais , Bovinos , Infecções por Herpesviridae/prevenção & controle , Masculino , Camundongos , Vacinas de DNA/administração & dosagem
5.
Viral Immunol ; 34(2): 68-78, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33146595

RESUMO

Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.


Assuntos
Herpesvirus Bovino 1 , Vacinas de DNA , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Ligante de CD40/genética , Bovinos , Herpesvirus Bovino 1/genética , Camundongos
6.
Front Vet Sci ; 7: 603622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240967

RESUMO

Interferon lambda (IFN-λ) is an antiviral naturally produced in response to viral infections, with activity on cells of epithelial origin and located in the mucosal surfaces. This localized activity results in reduced toxicity compared to type I IFNs, whose receptors are ubiquitously expressed. IFN-λ has been effective in the therapy of respiratory viral infections, playing a crucial role in potentiating adaptive immune responses that initiate at mucosal surfaces. Human IFN-λ has polymorphisms that may cause differences in the interaction with the specific receptor in the human population. Interestingly, bovine IFN-λ3 has an in silico-predicted higher affinity for the human receptor than its human counterparts, with high identity with different human IFN-λ variants, making it a suitable antiviral therapeutic candidate for human health. Here, we demonstrate that a recombinant bovine IFN-λ (rbIFN-λ) produced in HEK-293 cells is effective in preventing SARS-CoV-2 infection of VERO cells, with an inhibitory concentration 50% (IC50) between 30 and 50 times lower than that of human type I IFN tested here (α2b and ß1a). We also demonstrated the absence of toxicity of rbIFN-λ in human PBMCs and the lack of proinflammatory activity on these cells. Altogether, our results show that rbIFN-λ is as an effective antiviral potentially suitable for COVID-19 therapy. Among other potential applications, rbIFN-λ could be useful to preclude virus dispersion to the lungs and/or to reduce transmission from infected people. Moreover, and due to the non-specific activity of this IFN, it can be potentially effective against other respiratory viruses that may be circulating together with SARS-CoV-2.

7.
Front Vet Sci ; 7: 396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851000

RESUMO

Foot-and-Mouth Disease (FMD) is an acute viral disease that causes important economy losses. Vaccines with new low-cost adjuvants that stimulate protective immune responses are needed and can be assayed in a mouse model to predict their effectiveness in cattle. Immunostimulant Particle Adjuvant (ISPA), also known as cage-like particle adjuvant, consisting of lipid boxes of dipalmitoyl-phosphatidylcholine, cholesterol, sterylamine, alpha-tocopherol, and QuilA saponin, was shown to enhance protection of a recombinant vaccine against Trypanosoma cruzi in a mouse model. Thus, in the present work, we studied the effects on the magnitude and type of immunity elicited in mice and cattle in response to a vaccine based on inactivated FMD virus (iFMDV) formulated with ISPA. It was demonstrated that iFMDV-ISPA induced protection in mice against challenge and elicited a specific antibody response in sera, characterized by a balanced Th1/Th2 profile. In cattle, the antibody titers reached corresponded to an expected percentage of protection (EPP) higher than 80%. EPP calculates the probability that livestock would be protected against a 10,000 bovine infectious doses challenge after vaccination. Moreover, in comparison with the non-adjuvanted iFMDV vaccine, iFMDV-ISPA elicited an increased specific T-cell response against the virus, including higher interferon gamma (IFNγ)+/CD8+ lymphocyte production in cattle. In this work, we report for first time that an inactivated FMDV serotype A vaccine adjuvanted with ISPA is capable of inducing protection against challenge in a murine model and of improving the specific immune responses against the virus in cattle.

8.
Transbound Emerg Dis ; 67(6): 2507-2520, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32320534

RESUMO

Protection against foot-and-mouth disease virus (FMDV) has been linked to the development of a humoral response. In Argentina, the official control tests for assessing the potency of FMD vaccines are protection against podal generalization (PPG) and expected percentage of protection (EPP) curves built with quantitative data of antibodies determined by liquid-phase blocking ELISA (lpELISA). The results of these tests are used to accept or discard vaccines at the batch level. In this report, a mouse model was assessed as an alternative efficacy control for FMDV vaccines. To this aim, groups of cattle (n = 18) and BALB/c mice (n = 16) were inoculated with commercial FMDV vaccines and bleedings were performed 60 days post vaccination (dpv) in cattle and 21 dpv in mice. Specific FMDV antibody titres were measured in both species by a standardized lpELISA. A statistically significant association between antibody levels in cattle and mice has already been demonstrated. However, some vaccines have been misclassified since they were considered protective based on lpELISA results but did not induce good protection in cattle upon challenge. For this reason, other immunological parameters were evaluated to improve the prediction of protection in mice, without the need of using infective virus. In addition, antibody titres by lpELISA, the IgG2b/IgG1 isotype ratio and the Avidity Index were identified as good predictors, resulting in an optimal predictive model of protection. This mouse model could be a simple and economic alternative for testing FMD vaccines since the disadvantages of high costs and facility requirements associated with the use of large animals are overcome.


Assuntos
Anticorpos Antivirais/imunologia , Doenças dos Bovinos/prevenção & controle , Modelos Animais de Doenças , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Imunoglobulina G/sangue , Vacinas Virais/imunologia , Animais , Argentina , Bovinos , Doenças dos Bovinos/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Febre Aftosa/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/veterinária
9.
Parasitol Res ; 118(10): 2945-2955, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31485864

RESUMO

The aim of the present study was to characterize the specific immune response in prepubertal female calves inoculated with Neospora caninum. Forty-eight N. caninum-seronegative 6-month-old Angus female calves were randomly allocated into two groups: group A calves were inoculated subcutaneously (sc) with 1 × 106 tachyzoites of the low virulence NC-Argentina LP1 isolate in sterile phosphate-buffered saline (PBS); group B calves were mock inoculated sc with sterile PBS. Calves from group A developed a specific immune response characterized by the production of IgG antibodies and the expression of IFN-γ and TNF-α cytokines. Animals did not present any febrile reaction or reactions at the site of inoculation. Although chronic N. caninum infection was developed in 50% of calves of group A after inoculation, according to the presence of antibodies against rNc-SAG4, antigen characteristic of bradyzoites, N. caninum antibodies dropped below the cut-off of ELISA from day 210 post-inoculation onwards. Future trials using the same group of inoculated animals will allow the characterization of the evolution of the immune response during pregnancy and to determine whether the immunization with the local isolate is able to prevent congenital transmission and to protect against heterologous challenges.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Doenças dos Bovinos/imunologia , Coccidiose/veterinária , Neospora/imunologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Citocinas/metabolismo , Feminino , Imunização/veterinária , Neospora/patogenicidade , Distribuição Aleatória
10.
Vaccine ; 37(12): 1565-1576, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30777349

RESUMO

Exosomes are 60-150 nm small extracellular vesicles (EVs) released by most cells. Tumor-cell-derived exosomes, used as a vaccine, elicit a specific cytotoxic response against tumor cells, usually with a greater immunogenicity than tumor-cell lysates. However, the number of exosomes isolated from culture cells is limited. In recent studies, it was observed that cells respond to different stressor stimuli such as cytotoxic drugs, hypoxia, acidosis, or radiation by increasing the release of EVs. In this study, using the murine LBC T-cell lymphoma, we found that cyclophosphamide significantly increased EVs yield. These EVs express exosome marker proteins such as TSG-101, CD9, CD81, and CD63. Furthermore, similar humoral and cellular immune responses were induced in vivo by EVs isolated from LBC-tumor cells whether they were grown under normal culture conditions (EVs C) or in the presence of cyclophosphamide (EVs CTX). Mice vaccinated either with EVs C or EVs CTX were similarly protected against an intraperitoneal challenge with LBC tumor cells. CD4+ and CD8+ IFN-γ secreting cells were induced in immunized mice and a specific cytotoxic cellular immune response was elicited in vitro. These results demonstrate that a Th1 response was induced by immunization with the EVs. Our findings suggest that treatment of tumor cells with cyclophosphamide is a useful method to enhance the secretion of EVs in sensitive cell lines without altering their antitumor properties and thus may be used to produce antigens for future design of cancer vaccines.


Assuntos
Ciclofosfamida/farmacologia , Exossomos/imunologia , Exossomos/metabolismo , Imunidade/efeitos dos fármacos , Linfoma de Células T/imunologia , Linfoma de Células T/metabolismo , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Feminino , Linfoma de Células T/patologia , Linfoma de Células T/terapia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PLoS One ; 12(9): e0185184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28949998

RESUMO

Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals. A synthetic vaccine candidate consisting of dendrimeric peptides harbouring two copies of a B-epitope [VP1(136-154)] linked to a T-cell epitope [3A(21-35)] of FMDV confers protection to type O FMDV challenge in pigs. Herein we show in cattle that novel dendrimeric peptides bearing a T-cell epitope [VP1(21-40] and two or four copies of a B-cell epitope [VP1(135-160)] from type O1 Campos FMDV (termed B2T and B4T, respectively) elicited FMDV specific immune responses to similar levels to a commercial vaccine. Animals were challenged with FMDV and 100% of vaccinated cattle with B2T or B4T were protected to podal generalization. Moreover, bovines immunized with B4T were completely protected (with no clinical signs) against FMDV challenge after three vaccine doses, which was associated with titers of viral neutralizing antibodies in serum higher than those of B2T group (p< 0.05) and levels of opsonic antibodies similar to those of animals immunized with one dose of FMDV commercial vaccine. Bovines vaccinated with both dendrimeric peptides presented high levels of IgG1 anti FMDV in sera and in mucosa. When IgA in nasal secretions was measured, 20% or 40% of the animals in B2T or B4T groups respectively, showed anti-FMDV IgA titers. In addition, B2T and B4T peptides evoked similar consistent T cell responses, being recognized in vitro by lymphocytes from most of the immunized cattle in the proliferation assay, and from all animals in the IFN-γ production assay. Taken together, these results support the potential of dendrimers B2T or B4T in cattle as a highly valuable, cost-effective FMDV candidate vaccine with DIVA potential.


Assuntos
Dendrímeros/farmacologia , Febre Aftosa/prevenção & controle , Peptídeos/farmacologia , Animais , Bovinos , Vírus da Febre Aftosa/imunologia , Suínos , Vacinas Virais
12.
Front Immunol ; 8: 37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28179907

RESUMO

Bovine herpesvirus-1 (BoHV-1) is the causative agent of bovine infectious rhinotracheitis, an important disease worldwide. Although conventional BoHV-1 vaccines, including those based on the use of modified live virus and also inactivated vaccines, are currently used in many countries, they have several disadvantages. DNA vaccines have emerged as an attractive approach since they have the potential to induce both humoral and cellular immune response; nevertheless, it is largely known that potency of naked DNA vaccines is limited. We demonstrated previously, in the murine model, that the use of adjuvants in combination with a DNA vaccine against BoHV-1 is immunologically beneficial. In this study, we evaluate the immune response and protection against challenge elicited in bovines, by a DNA vaccine carrying the sequence of secreted version of glycoprotein D (gD) of BoHV-1 formulated with chemical adjuvants. Bovines were vaccinated with formulations containing the sequence of gD alone or in combination with adjuvants ESSAI 903110 or Montanide™ 1113101PR. After prime vaccination and two boosters, animals were challenged with infectious BoHV-1. Formulations containing adjuvants Montanide™ 1113101PR and ESSAI 903110 were both, capable of increasing humoral immune response against the virus and diminishing clinical symptoms. Nevertheless, only formulations containing adjuvant Montanide™ 1113101PR was capable of improving cellular immune response and diminishing viral excretion. To our knowledge, it is the first time that a BoHV-1 DNA vaccine is combined with adjuvants and tested in cattle. These results could be useful to design a vaccine for the control of bovine rhinotracheitis.

13.
Vaccine ; 33(38): 4945-53, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26212005

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals. This pathology is caused by foot-and-mouth disease virus (FMDV). Over time, the development of vaccines to prevent the spread of this illness became essential. Vaccines currently used contain the inactivated form of the virus. However, vaccination generates an immune response different to that induced by the infection. We investigated whether these differences are related to intracellular mechanisms on dendritic cells (DCs). As a result, we demonstrated that the internalization of infective virus triggered the phosphorylation of ERK1/2, which was involved in the activation of caspase-9, the intrinsic pathway of apoptosis and the delivery of viral peptides on MHC class I molecules. While, inactivated virus (iFMDV) did not affect this pathway or any function mediated by its activation. As described, infectious virus in DCs was also associated to autophagy LC3 protein and was associated to lysosomal protein Lamp-2; contrary to observe for the iFMDV. Strikingly, the processing of viral antigens to accommodate in class I molecules does not appear to involve the proteasome. Finally, this increased presentation promotes a specific cytotoxic response against infectious virus.


Assuntos
Apoptose , Células Dendríticas/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Vírus da Febre Aftosa/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Masculino , Camundongos Endogâmicos BALB C , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...